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What can we learn about 
quark binding from perturbation theory? 

Perturbation theory certainly cannot be expected to provide us with 

any reliable detailed information about an inherently strong coupling problem 

such as quark binding. Nevertheless, we might reasonably ask whether or 

not perturbation theory provides us with any hints about an underlying quark 

binding mechanism when applied to the “standard” model of quarks interacting 

with non-Abelian vector gluons (Quantum Chromodynamics or Q. C. D. ). 

In an attempt to investigate this question, Tom Appelquist, Hanna 

Kluberg-Stern, Mike Roth and myself set out to examine the classic Block- 

Nordsieck program iA 3 in the framework of Q. C. D. Let me remind you 

that in Quantum Electrodynamics the Block-Nordsieck program assures 

us that the infrared divergences associated with virtual corrections are 

cancelled by corresponding divergences in the emission of undetected photons 

whose total energy is less than the energy resolution AE of the detector. 

For the vertex in second order Q. E. D. this means that when we form a 

partial cross section the infrared divergences of the virtual exchange 

diagram: 
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are cancelled by the divergence of the emission diagram 
k 

< 

P’ 

9 

P 
when the undetected emitted photon has energy less than the energy reso- 

lution of the detector. For q2 > (2me12, where me is the electron mass, 

the fact that the partial cross section is free of infrared divergence implies 

that in Q. E. D. it is possible to produce an electron-positron pair and to 

detect either the electron or positron at some distant point provided we 

recognize the fact that the process involves undetectable radiation of soft 

photons. 

In Q. C. D. we want to examine essentially the same process--production 

of a quark-antiquark pair by a color singlet current, 

J,b) = 2 i 
po $A pm 

Instead of accompanying real and virtual photon radiation as we had in the 

Q. E. D. case, we now have gluon radiation in the Q. C. D. case. The 

detector has a finite energy resolution AE, and in order to obtain a gauge 

invariant cross section we assume the quark detector to trigger on some 

aspect of quark flavor. The quark detector therefore produces a sum over 

color states. Our experiment then looks like 
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where q2 > (2~)’ for TV = non-zero quark mass. 

Some differences with Q. E. D. exist of course. The most important 

of these is that in Q. C. D. the massless fields couple to themselves. This 

means that the coupling must be normalized at some off-mass-shell 

momentum point pz = -M2 so that the renormalized coupling is denoted by 

g(M). Another difference with Q. E. D. is the nature of the infrared cutoff. 

The device of using a photon mass as a cutoff cannot be extended to field 

theories with a non-Abelian gauge invariance. The best way to cutoff 

the theory and maintain gauge invariance is to dimensionally continue 

to 4 + E dimensions where E is complex and is taken to zero at the end. 

The object to be computed is a unitless transition probability 

appropriate to the experiment described earlier, 

AE 

where R 
AE 

is normalized by the Born amplitude and E represents the 

energies (center of mass, quark energy). The calculation is organized 

by grouping together the different unitarity cuts of each diagram con- 

‘tributing to 

-/7Jyi )= 
tf i 

Jx) e’r” 401 TC Lb4 Svd 102 
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The phase-space integral over the quark momentum is restricted by the 

detector kinematics which include a finite energy resolution. For sim- 

plicity all calculations are carried out in Feynman gauge. The final 

result is independent of gauge choice. 

On the two-loop level nPV(q) contains only ordinary Q. E. D. 

diagrams so that RAE is clearly finite. It is instructive to repeat the 

argument for finiteness in the simple case of the vertex correction con- 

tribution to nPy(q2): 

Altogether there are four unitarity cuts of this diagram. The following 

two: 

plus two others which are reflections of 1 and 2. The rules for unitarity 

cuts are: 

1. A progator factor of i/p2-m’+ie is replaced by 2n6+(p2-m2) 

[2n6 (p2-m2)] when the momentum runs from left to right 
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(right to left) across the cut. 

2. By convention, every factor to the right of a cut is complex 

conjugated. 

In order to see the cancellation of infrared divergences between cuts 

1 and 2 it is necessary to perform only the (dkO) integration for cut 1. 

This is done by complex integration in the complex kg plane. Closing 

in the lower complex kg plane produces two possible infrared divergent 

contributions, from the pole due to the quark propergator l/k2+2p.k+ ie 

we get, 

hac;y ifJ (-27~ 1 
fr 

(!k) 
oa+ 

Fq+, x ~..j x 

x ' I I 
2w ~P"~~)a-~12~~(-p,t~)-2ji;,~ f+uGJa-Ea 

where I have combined phase-space integrations appropriate to the 

detector as 

f fi pj p’) = &J&@~-r+P) c&y&, 6-y?/.&) )be4eh I 

and in the center of mass system, 

p-p:= J p,p ’ 

Jo’= J pp+ p’ 
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The integration over Cd;) is divergent for small k, however the divergent 

piece of the integral can be written as 

which is odd in k --k and therefore zero. The other infrared divergent 

contribution to cut 1 comes from the pole due to the i/k 2 +IC factor, 

[ (url”CM ig’l c-27i) 
Ju- 

da. FCpp’, 5 (-- -3 x 
o* 

I Y- I I 
2lRl 2plRl-2~~~ -qJ+q.\7 - 

The integral of cut 2 can be evaluated directly as 

- (27iq C” f 
fi 

(& fi p pll”C2pQq 7G [ -] x 
(271-+ 

Tk 2pd2~R 2(-,&)\w2fx 
the divergent piece of this integral exactly cancels the remaining diver- 

gent integral of cut 1. 
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In addition to the vertex correction contribution to 1~ we also 

have a self-energy insertion correction on the two loop level, 

This diagram by itself is not infrared divergent, however when it is 

combined with the quark mass counter-term it becomes infrared diver- 

gent if it is subtracted at the quark mass-shell. Fortunately, our pre- 

vious argument can be applied to the infrared divergent combination if 

we replace 1/R’ - p.+ie by 1/b- p+ ie throughout the calculation. The 

result is the same: all infrared divergences cancel amoung the cuts of 

the diagram. Thus at the two loop level all infrared divergences cancel 

in an appropriately defined cross-section. Notice that if our detectors 

could distinguish color, we could not combine the various cuts as we did. 

We would be left with an infrared divergence. 

On the three-loop level there are an enormous number of diagrams 

to consider. It turns out that all but four are found in ordinary Q. E. D. 

and thus are known to have infrared divergences which cancel between 

the various cuts of each diagram. 
4 

The four new diagrams which are 

unique to Q. C. D. are 
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*-a-* 
3-a. 

*-CD-- 
3-c 

where 

H -k 
3- h 

c --k 
3-d 

denotes the one-loop corrections to the gluon propagator. This object 

produces new infrared divergences not found in Q. E.D. because of 

the self-coupling of the massless gluon fields. 

It turns out that by using the dispersion relation for the gluon 

propagator we can reduce the first two diagrams to the two-loop situation. 

Consider diagram 3-a, the complete gluon propagator may be written as 

(4) ( jPY - y??) 

where d(k2) satisfies (see below) 

J&6 1 p.4 dt o,cpq 
k’+ i-s = c+ ;E -t 

T-o?) 
p-?& its 

0 



-9- 

The sum over unitarity cuts (with proper restrictions for the detector) 

of the first diagram is 

(34.1 c a- (oop 1 

Ch 
AE COTS 

‘1 c, g(M)] x n,,‘;;;;; 

4E cur.r 

+ 

where ~~VV1OOp)(q, A) corresponds to the two-loop vertex correction 

diagram considered earlier except with a mass A for the internal vector 

boson. The argument given earlier shows that the sum over cuts is 

finite even for X= 0. Thus the above equation is free of infrared diver- 

gence as e-0 provided 

(Z- foopl 

Jr 0)O y(M)3 + J cb? 7i?h=) 
40 

is finite. This is indeed the case because d[k2/M2, E, g(M)] is finite 

as e-0 for k2/M2 \ 0 since it is normalized at k2 = -M2. This argue- 

ment has only one slight complication: the dispersion intergral cannot 

really be taken down to A= 0 because the origin is an essential singu- 

larity. The same conclusion follows, however, if use is made of a 

small circle of radius 6 about the origin in the complex A 
2 

plane. 

The next two diagrams, 3-c and 3-d are much more difficult to 

deal with. Just as in the two-loop case the sum of cuts of diagram 3-d 

can be proven to be free of divergences by essentially the same argue- 

ment that applies to 3-c. The same kind of analysis that I used in the 
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two-loop case must be applied to 3-c with the added complication that 

there are now angular infrared divergences that are unique to theories 

of self-coupled massless gauge fields. 

To begin, we want to consider the diagram of 3-c with rootings as 

follows: 

+tK 

Altogether there are ten cuts of this diagram. The following five plus 

five more which are just reflections of the first five: 

C"f I. 

I=-‘ 

I 

r’ ‘th I 
1 I”’ Cot 

2. --- rd. 

a K, 

-- 
2 

P tk JL ’ 
I 

P 
p -L 1 
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p;\ I 
P’ 

Cd 3. I fk )r- 

a 

“2 I -x 

P ,K IL 
P 

P-L , 

I 
pbc 

cut $: 
K P’ 

*- 

a 

K+i 
,’ LL 

-* 

P+k ’ P 

, r-1 
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The procedure is to perform the integrations over (dko) and (deO) and 

then to isolate all remaining infrared divergences. The proof of infra- 

red finiteness is to show that as E - 0 the divergent parts of the remain- 

ing integrals cancel among these five different cuts. 

The first cut is the most difficult because both integrations must 

be done as integrations in the complex plane. First let me make the 

notation as compact as possible: 

Each diagram contains a trace factor of 

T; r.a.3 fiuAf -6 I b’, ( p+)F+ YH< b-{-p ) PC p+/4q & 

K LY”( $+ Pc~~+~+p,~ 

and a tri-vector vertex factor of 

r 
P-u I\ 

in the combination 
2 

VA 
- <2K+L)Y3Uh 

N = TV ~..yyPYh 
inside of a phase-space integral 

A ( 9 J( -p-p’) (~R)2&A5fl) & &q 
I de&c fw 
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where A and B are quarkmomentum vectors. By n=4+e I mean that 

the integrals are regulated by dimensional continuation with (complex) E-O 

at the end. By I mean that the detector restric- 

tions must also be inserted - i.e., the total energy of any emitted mass- 

less quanta is less than AE. In addition there may be angular restric- 

tions applied to the detected quark. Then the diagram of cut 1 is 

cl.= [fi PJ P’) i,,, &.Kt& Kk&Le &.4+ie h 0 

I \ I 
r- 

C-tie R%ic? (Kt.fzFt& 

where etc. If I want to think of doing the de0 

c.= cl:‘+ c:‘+ c: = 
f 

Fcp p’ 1 

integration first I may write this as a sum of three terms 

\ x f$+ie I I 
K+ Kc+z‘Z e-2++i e 

where (in the complex PO plane) 
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t-4 - 6+ (/+4+4 -L ’ 
2 p-L I?+2 KRt2 p" 

3 dt(S%&) --\ I 

2p-R K% %K* R 

+ &K+x~=+iG) - ’ -I 

K%?w+2p.R l"-t 2twz 

The delta functions force lo to have the values (in c.m. frame) 

J$= pot Jo' - ii/ilm in Ctf: 

lo= In - i+,z, in c: 

Q* = - I<0 +- i EtZ\ - if: z\g+iG in / c; 
J-iT= 

1 
.Qha+ /iP . 

I must be careful to retain the ic terms as E-O+ because this generates 

restrictions on which poles I pick up when I do the dk, integration. 

Next I do the dko integration and let E-O+ in the denominators. 

For Cl* 
1. 

there are four poles in the complex k. plane which I label 

by means of a second index: 

Cl = c(b’+ pa.+ c,I”3’+ C”‘4-. 
I. I. 
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The first is at ko= (;+?I- m- po and has no infrared singularities 

of any kind. The second is at ko = (k’l and can be written as 

(-mf j 5 p, p’l I*- I 

where [---I is obtained by substitution of io=P o+a and ko- lk’( 

in the above expressions. Inspection shows that this term has a D = 0 

infrared divergence in the dz integration as I;/ - 0 for /F/ +O and 

no other divergence. I shall label this source of divergence 

$., 2. 
1. (ks Ph, 0) where the subscript stands for cut I., and the two 

superscripts denote the particular term. The two variables describe 

the limit which generates the infrared divergence,and the zero means 

that the divergence is logarithmic. Clearly a single term may generate 

several infrared divergences each from different regions of the integra- 

tion variables. To denote this I will express the contribution of a given 

term as sum of terms each one of which has an infrared divergence 

arising from a particular limit of the integration variables. Finally I 

denote the degree of divergence by the last variable. The term described 

above as C ;-‘“* (ks 1! h, 0) will eventually be canceled by a term in cut 2 

referred to as Ci* (ks !. h, 0) for which ko= [c( and Po=po+ a, 

The third pole in the k. plane is at 

K,= - pt -RF where 
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Remember all C:’ terms have lo = p o+m. Thistermhasa D-O 

divergence for ks Ih but does not contribute in this limit because it is 

odd under k - - k’. Thus C;*’ 3’ (ks I h, 0) = 0. The term C:* “* is at 

k. = p, + a which is bounded away from the origin in the k. planej 

thus there is no infrared divergence. 

For the term Ci: ( PO = ITI) we begin to encounter a more complex 

situation. There are three poles in the complex k. plane which produce 

infrared divergence. The first one of these, k. = lk’+ J*l - ITl, produces 

a very complicated term 

(ksP h, -1) +c ;+ksPs, 0) 

+c y-(lT II T, 0) 

where C1 2. *I* (iTI m-, 0) denotes an angular logarithmic divergence which 

occurs for k parallel to T. Fortunately the entire term, Ci’ ’ 1. 
, is 

3., 3. identically canceled by the term C1 which has the same values of 

po = I;[ andko = [< + T[ - I;[. At k. = I;[ we encounter a term, 

2. ,2. 
ci. , which contains the factor 

I 

ZIIZI IRI -2lY.z 

which generates an angular logarithmic divergence when k is parallel to 

P (essentially the same term generates Cl 2* ’ I. (lT II ii+, 0)). Altogether 

we have the following infrared divergence structure: 
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ksPh, -1) + Cl 2-‘2’ (k hPs, 0) 

+ c1. 
L,yk p 

s s’ 0) +c ;.’ 2. (l-T II Pi-, 0). 

The piece C1 2*2.(ks Ph, -1) combines with C3;‘4.(ks~h, -1) (both have 

ko=I<l andlo= -* IP 1 in this limit) to produce a remainder, 

[ . 
C;*’ ” (ksl h, -1) + Cl 3”4*(ksl h, ] -1) which has only a D = 0 divergence. 

The remainder finally cancels with a similar combination of terms in 

cut 2. , 
L- . C,“. (ksf h, -4)++ksih, -1) . 

3 
The term C1 2.‘2.(k hPs, 0) 

-+ + 
cancels with C ;*“*(khIs, 0) when 1 * -e in the khP s limit. The 

“double soft” term C1 ‘* ‘* (ksl s, 0) cancels against Cz* (ksP s, 0). and the 

angular piece, C ;*2-(lT II i-, 0) will be discussed later. 

The last contributing pole in the k. plane is at k. = -p, + h/sand 

produces C1 z., 3. = c2., 3. 
-1) + c The term 

c2.,3. ’ 
1. (ksP h f’ ’ 3’ (ksI s, 0). 

1. (ksP h, -1) combines with C1 3* ’ 5’ (ksPh , -1) to produce a D = 0 

remainder which is explicitly odd under k - -I? and hence zero. The 

term Ci*‘3’(ksPs, 0), in which [I?[ and [Tl both go to zero, can be seen 

to cancel C:’ ’ 5* (ksI s, 0) if we note that the transformation, 

+4?’ 

&- Z’i- Tf’ 

leaves the numerator factor, N, invariant in this limit only. --- 
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Next me come to the terms of C:’ ( PO = -kc + lk’+ a’l) several of 

which I have already mentioned. In this case, there are five poles in the 

complex k. plane which generate infrared divergences. Briefly we have: 

1. ) cf. ’ I. at k o= I~+~/-~,+~~;P =p,-awith 
0 

(k hP s> 0) + C;’ ‘I- (ksP s, 0). 

The term C:* ’ ‘* (kh 1 s, 0) is odd under J? -f -? and vanishes in 

the kh es limit. The term C:. ‘I* (ksl s, 0) cancels with a term of 

cut 4. , ‘2;. (ks J s> O), if we make the transformation 

it-+ -C’ 

+ j?y+ X’ 

in the term of cut 4. 

2. ) c;. ’ 2. at k o = lk’ + 71 + la-1 ; lo = - IJ?~ with 

c3., 2. = 
1. 

c3., 2. 
1. 

(khPs, 0) +C;“2*~(ksQ 0) 

f c3. f 2. 
1. 

(l7 II 7, 0). 

The term C1 3.Atk p s, 0) cancels C4 2.‘2’(khPs; 0) as already 

. mentioned. Theterm C:*‘2’(ks1s, 0) cancels with the only term of 

cut 3. in the ksls limit, C 3 (ksPs, 0). The angular divergence I 

leave for later. 
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3. ) c;. ’ 3. at k 

as promised. 

4. ) c;- ’ 4. at k. = lk’[, lo = - \I? I + I k’ + 1~1 with 

c3. ,4. = 
1. 

c3..4. 
1. (ksJ- h. -1) + c ;“4.(ksPs, 0) 

+ c3. ,4. 
1. 

(2 II Ii, 0). 

The term Cl 3*‘4’(kslh, -1) combines with C 2.. 2. 
1. (ksP h> -1) 

as already discussed. The “double-soft” term C ;“4’(ks’s, 0) 

cancels a term of cut 2., Cs* (k s sI 0). p 

at k o = -p, + m; PO =ip, + 0 + F + c 1 with 

3., 5. = c3., 5. 

The Ci*‘T;r;k P , 

1. $1 h. 
3., 5. -lj+cl (k P s s, 0). 

-1) term combines with C1 

the C:” 5* (ks: sh 0) term cancels C:’ ’ 3* (k 

2’ ’ 3’ (ks P h -I), and 

p * s sI 0) (after transformation) 

as promised, 

Our analysis of cut 1. is now complete, aside from angular divergences, 

and we turn to cut 2. which is much less complicated due to the presence 

of 6+(k2). Only three terms are present: 

atko = jk’l, lo =p,+ m with 

= C;* (ks Ph, 0). 

This term cancels C:” 2’ (ksJh, 0). 
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2. ) c;* at k. = 121, p. = /;I with 

= ‘2;’ (ksP h, -1) +C;.(k P 
. h s’ ‘1 

+ C;’ (ksP s, 0) + C;’ (c II ;, 0). 

The term Ci’ (ksP h, -1) combines with Cz’ (ksP h, -1) to become 

only D = 0 in this limit. The combination cancels 

[ . 
C;* ’ 2’ (ksP h, -lj+cl 3*‘4’(ksB h, ] -1) as already explained. 

The term Cz’ (k h1 s, 0) is canceled by the single term of cut 3. in 

this limit, C3 (khPs, 0). The double soft term C~‘(ksP s, 0) cancels 

C;*‘2*(ks1s, 0). 

3. ) c;. atko=I<[, mo=I~+~l-ll?l with 

(2;. = C;- (ksP h, -1) + C;‘(ksPs, 0) 

+ c;* (C II a-, 0). 

As just mentioned, Ci’ (ksPh, -1) combines with Cz’ (ksPh, -1 L 
3. ,4. 

and Cz*(ksPs, 01 cancels C1. (k P s sI 0). 

Cut 3. contains only one term because of the two delta functions. 

It is C3. at k. = ITI + [c+ 4 , lo = - 171 with 

c3. = C3. (khPs> O)+C3 (kses, 0) 

+ c3 (iT II a-; 0). 

The term C3 (khP s, 0) cancels Cz’ (k his> 0) after we let 1+ -’ -T, and 

the term C3 (ksPs, 0) cancels C:“2’(ksls. 0). 
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Cut 4. has a 6+(12) so that IO = [zl and there are three terms: 

1. ) c;. at k = -p 
0 

o +m with Ci’ = C;- (ks! s, 0) as the 

only divergence. This term cancels Ci*” ” (ks’P S, 0) after transformation 

2. ) c;* at k o = 1; + F[ - 11-1 with 

C!;’ = C;: (khP s, 0) + C;’ ((k + P &(k - I )h, 0) 

+ ‘$ (ksPs> o)+cp II m-, 0). 

The term Ct: (khP sI 0) cancels with the next term, C3* 4 khPs. O), 

and Ci’ ((k + P )s(k - P jh, 0) cancels with the same limit of the single 

term of cut 5.) C5 ((k + 1 )s(k - P Jh, 0). The term Ct. s s, 0) (k 1 

changes sign under 

;- -y 

iI + K’+ iT’ 

in the ksPs limit and is therefore zero. 

3. ) c:* at k. = FI with 

C:* = C;’ (ksP h, O)+C!;-(k P 
. h s’ ‘) 

+ C;’ (k I 
. s 53, 0) + c;* (C II I-, 0). 

The term C:’ (ksP h, 0) cancels the single term of cut 5. in the limit, 

(3. (ksP h’ 
O), ifweletZ+-Z. As just mentioned, Ci’ (khPs, 0) 

cancels with C:: (khP s, 0 ), and C:. (khP s, 0) is canceled by 

C5 (ksPs, 0) if we make the transformation 

E-%- -<’ 

z -a- KG-j? 
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Lastly, we have cut 5. which has only one term because of the two 

delta functions. These imply that 

K, = --Ii?71 

Ro = {‘i’c\ + l,E+ Zl 

and. we find 

5. = C5 (ks Ph> 0) + C5 ((k + 1 &(k - t ),, 0) 

+ C5 (ksPs, 0) + C5 (c II ?, 0). 

As already explained I find that C5 (ksih, 0) cancels (2:’ (ksPh, 0): 

C5 ((k + P ),(k - P )h, 0) cancels Cz* ((k + I IS& - P jh, 0). and C5 (ksPs, 0) 

cancels C:: (khes, 0). 

There now remains only the angular divergences which are easy to 

treat. Define, 

for I;[ *O and ITI f 0, and I consider cut 1. in detail first. There are 

z., 2. - three terms with angular divergence: C1 (k II 7, 0), C;* “* (2 II PT. 0) 

and C:’ 14* (2 II .r, 0). Each of these terms contains logarithmic divergence 

in the angular integration over cos 0. It is not difficult to check that 

0) has its divergence only at cos f3 = 1 for any value of 
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lk’[ and ( 71 not zero. The term C::’ 2’(c (1 F, 0) has divergence only 

when cos 0 = -1 and rl 7 F 1 70, and C’,:‘“* (2 II a-, 0) has divergence 

at cos B = 1 for lk’l, I.F*l >Oandatcos 0 =-lfor 121 7 171 70. To 

denote these situations I write, 

2. ,2. - 

ci. 
(k 11 T, 0) = c;*‘2*(*) 

c3., 2. 

1. 
(2 II T, 0) = c;“2*i-i, 12-l 7 [lq, 

c3. ,4. 
1. 

(2 II m+, 0) = c;-4. (1) + c;-a4y1, [Cl 7 [T[). 

2.) 2. 
It is easy to show that C1 (1) cancels C:’ ’ 4’ (1) and 

C:“” (-i, Fl 7 171) cancels C:: “’ (-1, F\ 7 le’\). Almost precisely 

the same analysis applies to the angular divergences of cuts 2. and 3. and 

to the divergences of cuts 4. and 5. 

What can we learn from this long analysis? At least two things are 

clear : 

1. ) It is essential that the infrared divergences be no stronger 

than they are in 4 dimensions. I expect the above cancellation of 

infrared divergences to break down in two or three dimensions. 

2. ) Because I had to use explicit properties of the numerator 

structure to show the cancellation, I assume that the cancellation 

may be interpreted as a direct result of the gauge invariance of the 

couplings. 

Furthermore, if we are willing to assume that the cancellation continues 

to hold to all orders, we obtain the result that perturbation theory implies 

that it is indeed possible to separate quark flavor--hence no confinement. 
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Discussion 

Question: (Dr. Stump) 

Is it not true that the cancellation of infrared divergences you 

just described is, in some sense, obvious? 

Answer: 

In theories such as Q. E. D., the cancellation of infrared divergences 

for situations such as I have just described is often attributed to a 

well-known theorem of T. D. Lee and M. Nauenberg 
5 

which demonstrates 

that under very general conditions the cancellation of infrared divergences 

is a consequence of an elementary theorem of quantum mechanics 

which is independent of the explicit form of the Hamiltonian. Unfortunatel: 

for the case of Q. C. D. no one has yet been able to show that the 

theorem is applicable. The problem is that the theorem requires 

the existence of a cutoff parameter, )I, for which the theory is: 

1. ) Infrared divergent only for lo + 0. 

2. ) Well defined for p \ 0 in the sense that it possess a unitary 

S-matrix. 

The device of inserting a gluon or photon mass works in Q. E. D. 

but is known not to work in the Yang-Mills case because of the non- 

hermitian nature of the ghost coupling. One might think of first going 

to Coulomb gauge and then introducing a gluon mass term, but this 

also does not work. The problem here is that the Coulomb gauge 
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Hamiltonian contains an infinite number of terms which serve to 

cancel the non-covariant vertices of the theory in the calculation of 

gauge invariants. If the infrared divergence of the theory is regulated 

by introduction of a gluon mass, the gauge invariance is destroyed, 

and the cancellation of the non-covariant vertices fails. This means 

that the theory is no longer well-defined because it is not equivalent 

to a truly renormalizable theory. 

Question: (Dr. Yan) 

Have you computed what R aE actually is? 

Answer: 

No, because I have no way of finding how to extract the aE 

dependence to all orders. -- In Q. E. D. I know how to do this because 

Q. E. D. is “infrared free. ” Yang-Mills theory is not “infrared 

free” but is very complicated in this limit. 

Question: (F. Wilczek) 

Do you know if your use of Feynman gauge ensures that the 

infrared divergences in higher orders continue to cancel among the 

cuts of each diagram of rPy(q), or is there a cancellation of divergences 

between cuts of different diagrams of r;v(q)? 

Answer: 

No, I don’t know what happens in higher orders. 
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